Contenido principal del artículo

Frowen Valencia-Lucas
Juan Paredes-Quevedo
Pedro Noboa-Romero
Carlos Campoverde-Pillajo

El temple de aceros en hornos industriales demanda altos consumos de energía y genera emisiones relevantes, por lo que es necesario evaluar alternativas de combustible más eficientes. El objetivo fue analizar termo-exergéticamente el cambio de diésel a gas natural en un horno de temple de ballestas de acero, integrando criterios termo-económicos. El enfoque metodológico fue cuantitativo, mediante un estudio de caso de tipo analítico-comparativo aplicado al horno industrial de temple de una fábrica de resortes ubicada en Cuenca, Ecuador. El diseño no experimental transversal. Se realizaron balances de masa, energía y entropía en régimen estacionario para ambos combustibles, modelando la combustión, las pérdidas térmicas y calculando exergía destruida, eficiencias y costes exergo-económicos. Los resultados muestran que, para una misma potencia útil, el gas natural reduce un 47 % el calor de combustión y un 75 % el calor evacuado en los gases de escape, y disminuye un 98 % el coste por unidad de exergía destruida. Se concluye que la conversión a gas natural es técnica y termo-económicamente viable, aunque se requiere refinar el modelo exergético con datos experimentales.

The tempering of steel in industrial furnaces requires high energy consumption and generates significant emissions, making it necessary to evaluate more efficient fuel alternatives. The objective was to analyse the thermo-exergetic change from diesel to natural gas in a steel leaf spring tempering furnace, integrating thermo-economic criteria. The methodological approach was quantitative, through an analytical-comparative case study with a non-experimental cross-sectional design. Mass, energy and entropy balances were carried out under steady-state conditions for both fuels, modelling combustion and thermal losses and calculating destroyed exergy, efficiencies and exergoeconomic costs. The results show that, for the same useful power, natural gas reduces combustion heat by 47 % and heat evacuated in exhaust gases by 75 %, and decreases the cost per unit of destroyed exergy by 98 %. It is concluded that conversion to natural gas is technically and thermo-economically viable, although the exergy model needs to be refined with experimental data.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Valencia-Lucas , F. ., Paredes-Quevedo , J. ., Noboa-Romero , P. ., & Campoverde-Pillajo , C. . (2026). Análisis termo-exergético del cambio de combustible diésel-gas natural en hornos industriales de temple. Revista Ingeniería, 10(26), 1–15. https://doi.org/10.33996/revistaingenieria.v10i26.138
Sección
ARTÍCULO ORIGINAL
Bookmark and Share
Referencias

Al-Hamed, K. H. M., y Dincer, I. (2020). Natural gas as a transitional solution for railway powering systems: Environmental and economic assessment of a fuel cell based powering system. Journal of Natural Gas Science and Engineering, 80, 103347. https://doi.org/10.1016/j.jngse.2020.103347

Al-Hamed, K. H. M., y Dincer, I. (2021). Comparative evaluation of fuel cell based powering systems for cleaner locomotives. Thermal Science and Engineering Progress, 23, 100912. https://doi.org/10.1016/j.tsep.2021.100912

Bulbul, Y., Arbak, A., Karagoz, Y., Karagöz, S., Sandalci, T., y Pusat, S. (2023). Exergy and environmental analyses of natural gas and biogas fuels in an internal combustion engine at part load. International Journal of Exergy, 42(4), 337-349. https://doi.org/10.1504/IJEX.2023.135836

Chong, Z. R., Yang, S. H. B., Babu, P., Linga, P., y Li, X.-S. (2016). Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy, 162, 1633-1652. https://doi.org/10.1016/j.apenergy.2014.12.061

Effatpanah, S. K., Ahmadi, M. H., Delbari, S. H., y Lorenzini, G. (2022). Energy, exergy, exergoeconomic and emergy-based exergoeconomic (emerGoeconomic) analyses of a biomass combustion waste heat recovery organic rankine cycle. Entropy, 24(2), 209. https://doi.org/10.3390/e24020209

Fierro, J. J., Escudero-Atehortua, A., Nieto-Londoño, C., Giraldo, M., Jouhara, H., y Wrobel, L. C. (2020). Evaluation of waste heat recovery technologies for the cement industry. International Journal of Thermofluids, 7-8, 100040. https://doi.org/10.1016/j.ijft.2020.100040

He, T., Chen, J., Gundersen, T., Lin, W., Chen, L., y Zhang, K. (2025). Exergy efficiency improvement by compression heat recovery for an integrated natural gas liquefaction-CO₂ capture-NGL recovery process. Applied Thermal Engineering, 259, 124812. https://doi.org/10.1016/j.applthermaleng.2024.124812

Hesampour, R., Taki, M., Fathi, R., Hassani, M., y Halog, A. B. (2022). Energy-economic-environmental cycle evaluation comparing two polyethylene and polycarbonate plastic greenhouses in cucumber production (from production to packaging and distribution). Science of the Total Environment, 828, 154232. https://doi.org/10.1016/j.scitotenv.2022.154232

Kheir Abadi, M., y Ebrahimi-Moghadam, A. (2024). An innovative sustainable multigeneration energy system (electricity, heat, cold, and potable water) based on green hydrogen-fueled engine and dryer. Applied Energy, 376, 124184. https://doi.org/10.1016/j.apenergy.2024.124184

Li, X.-S., Xu, C.-G., Zhang, Y., Ruan, X.-K., Li, G., y Wang, Y. (2016). Investigation into gas production from natural gas hydrate: A review. Applied Energy, 172, 286-322. https://doi.org/10.1016/j.apenergy.2016.03.101

Maruf, M. H., Rabbani, M., Ashique, R. H., Islam, M. T., Nipun, M. M. K., Haq, M. A. ul, Al Mansur, A., y Shihavuddin, A. S. M. (2021). Exergy based evaluation of power plants for sustainability and economic performance identification. Case Studies in Thermal Engineering, 28, 101393. https://doi.org/10.1016/j.csite.2021.101393

Mathevon, A., Massardier, V., Fabrègue, D., Douillard, T., Rocabois, P., Ollagnier, A., y Perez, M. (2024). Tempering of dual phase steels: Microstructural evolutions and mechanical properties. Materials Science and Engineering: A, 908, 146762. https://doi.org/10.1016/j.msea.2024.146762

Mio, A., Barbera, E., Massi Pavan, A., Danielis, R., Bertucco, A., y Fermeglia, M. (2023). Analysis of the energetic, economic, and environmental performance of hydrogen utilization for port logistic activities. Applied Energy, 347, 121431. https://doi.org/10.1016/j.apenergy.2023.121431

Muth, D., Rodriguez, E., Sales, C. M., Retallick, W. B., y Churchill, S. W. (2005). An economic and thermodynamic evaluation of the conversion of natural gas to liquid fuels using an ion-transport membrane. En AIChE 2005 Annual Meeting Proceedings (pp. 4224-4236). AIChE. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645651177&partnerID=40&md5=cab9c081d98f1ccb8f4ab61fed77c79f

Nie, J., Jin, S., Wang, J., Yi, Y., Su, W., y Wu, B. (2025). Exergy characteristics and correlation analysis of diesel-natural gas dual-fuel premixed combustion. Applied Thermal Engineering, 278, 127468. https://doi.org/10.1016/j.applthermaleng.2025.127468

Oğur, E., Koc, A., Yagli, H., Köse, Ö., y Koc, Y. (2025). Shifting to lower carbon emission for aircraft: An alternative fuel evaluation. Energy, 316, 134426. https://doi.org/10.1016/j.energy.2025.134426

Ouyang, T., Wang, Z., Wang, G., Zhao, Z., Xie, S., y Li, X. (2021). Advanced thermoeconomic scheme and multi-objective optimization for exploiting the waste heat potentiality of marine natural gas engine. Energy, 236, 121440. https://doi.org/10.1016/j.energy.2021.121440

Rinik, R. A., Islam, N., Ehsan, M. M., y Khan, Y. (2024). Design of gravity assisted heat exchanger and its application on enhanced waste heat recuperation utilizing organic Rankine and LNG system. International Journal of Thermofluids, 24, 100822. https://doi.org/10.1016/j.ijft.2024.100822

Rubio, A., y León, B. (2024). Actividades deportivas para mejorar el aprendizaje en la materia de física. Revista Científica de Salud y Desarrollo Humano, 5(2), 398-409. https://doi.org/10.61368/r.s.d.h.v5i2.139

Su, Z., Ouyang, T., Chen, J., Xu, P., Tan, J., Chen, N., y Huang, H. (2020). Green and efficient configuration of integrated waste heat and cold energy recovery for marine natural gas/diesel dual-fuel engine. Energy Conversion and Management, 209, 112650. https://doi.org/10.1016/j.enconman.2020.112650

Tetik, T., y Karagoz, Y. (2025). Exergetic, economic, and environmental impact assessments of a natural gas-diesel fuel blended internal combustion engine. International Journal of Exergy, 47(1), 1-11. https://doi.org/10.1504/IJEX.2025.146410

Tikadar, D., Gujarathi, A. M., y Guria, C. (2021). Safety, economics, environment and energy based criteria towards multi-objective optimization of natural gas sweetening process: An industrial case study. Journal of Natural Gas Science and Engineering, 95, 104207. https://doi.org/10.1016/j.jngse.2021.104207

Torrubia, J., Valero, A., y Valero, A. (2023). Energy and carbon footprint of metals through physical allocation. Implications for energy transition. Resources, Conservation and Recycling, 199, 107281. https://doi.org/10.1016/j.resconrec.2023.107281

Yang, X., Zou, J., Lei, Q., Lu, X., y Chen, Z. (2023). Thermo-economic analysis and multi-objective optimization of a novel power generation system for LNG-fueled ships. Journal of Marine Science and Engineering, 11(12), 1219. https://doi.org/10.3390/jmse11122219

Yu, S., Chen, R., Zhao, Z., y Wei, F. (2025). Multi-aspect evaluation and optimization of a tri-generation scheme integrating a geothermal power plant with a salinity-gradient solar pond. Energy, 320, 135234. https://doi.org/10.1016/j.energy.2025.135234

Zhang, J., Alotaibi, M. A., y Wang, M. (2024). Thermo-enviro-economic analyses of a landfill biogas-fed polygeneration process combined with a liquefied natural gas cold energy utilization unit. Applied Thermal Engineering, 257, 124325. https://doi.org/10.1016/j.applthermaleng.2024.124325

Zhang, L., Xue, Y., Xie, Q., y Ren, Z. (2021). Analysis and neural network prediction of combustion stability for industrial gases. Fuel, 287, 119507. https://doi.org/10.1016/j.fuel.2020.119507

Zhou, J., Tang, N., Lua, A. C., y Duan, F. (2025). Environmental and economic viability of a dual-fuel marine engine using liquefied natural gas and diesel. Applied Thermal Engineering, 279, 127859. https://doi.org/10.1016/j.applthermaleng.2025.127859