Análisis termo-exergético del cambio de combustible diésel-gas natural en hornos industriales de temple
Thermo-Exergetic Analysis of the Diesel–Natural Gas Fuel Switch in Industrial Quenching FurnacesContenido principal del artículo
El temple de aceros en hornos industriales demanda altos consumos de energía y genera emisiones relevantes, por lo que es necesario evaluar alternativas de combustible más eficientes. El objetivo fue analizar termo-exergéticamente el cambio de diésel a gas natural en un horno de temple de ballestas de acero, integrando criterios termo-económicos. El enfoque metodológico fue cuantitativo, mediante un estudio de caso de tipo analítico-comparativo aplicado al horno industrial de temple de una fábrica de resortes ubicada en Cuenca, Ecuador. El diseño no experimental transversal. Se realizaron balances de masa, energía y entropía en régimen estacionario para ambos combustibles, modelando la combustión, las pérdidas térmicas y calculando exergía destruida, eficiencias y costes exergo-económicos. Los resultados muestran que, para una misma potencia útil, el gas natural reduce un 47 % el calor de combustión y un 75 % el calor evacuado en los gases de escape, y disminuye un 98 % el coste por unidad de exergía destruida. Se concluye que la conversión a gas natural es técnica y termo-económicamente viable, aunque se requiere refinar el modelo exergético con datos experimentales.
The tempering of steel in industrial furnaces requires high energy consumption and generates significant emissions, making it necessary to evaluate more efficient fuel alternatives. The objective was to analyse the thermo-exergetic change from diesel to natural gas in a steel leaf spring tempering furnace, integrating thermo-economic criteria. The methodological approach was quantitative, through an analytical-comparative case study with a non-experimental cross-sectional design. Mass, energy and entropy balances were carried out under steady-state conditions for both fuels, modelling combustion and thermal losses and calculating destroyed exergy, efficiencies and exergoeconomic costs. The results show that, for the same useful power, natural gas reduces combustion heat by 47 % and heat evacuated in exhaust gases by 75 %, and decreases the cost per unit of destroyed exergy by 98 %. It is concluded that conversion to natural gas is technically and thermo-economically viable, although the exergy model needs to be refined with experimental data.
Descargas
Detalles del artículo
Al-Hamed, K. H. M., y Dincer, I. (2020). Natural gas as a transitional solution for railway powering systems: Environmental and economic assessment of a fuel cell based powering system. Journal of Natural Gas Science and Engineering, 80, 103347. https://doi.org/10.1016/j.jngse.2020.103347
Al-Hamed, K. H. M., y Dincer, I. (2021). Comparative evaluation of fuel cell based powering systems for cleaner locomotives. Thermal Science and Engineering Progress, 23, 100912. https://doi.org/10.1016/j.tsep.2021.100912
Bulbul, Y., Arbak, A., Karagoz, Y., Karagöz, S., Sandalci, T., y Pusat, S. (2023). Exergy and environmental analyses of natural gas and biogas fuels in an internal combustion engine at part load. International Journal of Exergy, 42(4), 337-349. https://doi.org/10.1504/IJEX.2023.135836
Chong, Z. R., Yang, S. H. B., Babu, P., Linga, P., y Li, X.-S. (2016). Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy, 162, 1633-1652. https://doi.org/10.1016/j.apenergy.2014.12.061
Effatpanah, S. K., Ahmadi, M. H., Delbari, S. H., y Lorenzini, G. (2022). Energy, exergy, exergoeconomic and emergy-based exergoeconomic (emerGoeconomic) analyses of a biomass combustion waste heat recovery organic rankine cycle. Entropy, 24(2), 209. https://doi.org/10.3390/e24020209
Fierro, J. J., Escudero-Atehortua, A., Nieto-Londoño, C., Giraldo, M., Jouhara, H., y Wrobel, L. C. (2020). Evaluation of waste heat recovery technologies for the cement industry. International Journal of Thermofluids, 7-8, 100040. https://doi.org/10.1016/j.ijft.2020.100040
He, T., Chen, J., Gundersen, T., Lin, W., Chen, L., y Zhang, K. (2025). Exergy efficiency improvement by compression heat recovery for an integrated natural gas liquefaction-CO₂ capture-NGL recovery process. Applied Thermal Engineering, 259, 124812. https://doi.org/10.1016/j.applthermaleng.2024.124812
Hesampour, R., Taki, M., Fathi, R., Hassani, M., y Halog, A. B. (2022). Energy-economic-environmental cycle evaluation comparing two polyethylene and polycarbonate plastic greenhouses in cucumber production (from production to packaging and distribution). Science of the Total Environment, 828, 154232. https://doi.org/10.1016/j.scitotenv.2022.154232
Kheir Abadi, M., y Ebrahimi-Moghadam, A. (2024). An innovative sustainable multigeneration energy system (electricity, heat, cold, and potable water) based on green hydrogen-fueled engine and dryer. Applied Energy, 376, 124184. https://doi.org/10.1016/j.apenergy.2024.124184
Li, X.-S., Xu, C.-G., Zhang, Y., Ruan, X.-K., Li, G., y Wang, Y. (2016). Investigation into gas production from natural gas hydrate: A review. Applied Energy, 172, 286-322. https://doi.org/10.1016/j.apenergy.2016.03.101
Maruf, M. H., Rabbani, M., Ashique, R. H., Islam, M. T., Nipun, M. M. K., Haq, M. A. ul, Al Mansur, A., y Shihavuddin, A. S. M. (2021). Exergy based evaluation of power plants for sustainability and economic performance identification. Case Studies in Thermal Engineering, 28, 101393. https://doi.org/10.1016/j.csite.2021.101393
Mathevon, A., Massardier, V., Fabrègue, D., Douillard, T., Rocabois, P., Ollagnier, A., y Perez, M. (2024). Tempering of dual phase steels: Microstructural evolutions and mechanical properties. Materials Science and Engineering: A, 908, 146762. https://doi.org/10.1016/j.msea.2024.146762
Mio, A., Barbera, E., Massi Pavan, A., Danielis, R., Bertucco, A., y Fermeglia, M. (2023). Analysis of the energetic, economic, and environmental performance of hydrogen utilization for port logistic activities. Applied Energy, 347, 121431. https://doi.org/10.1016/j.apenergy.2023.121431
Muth, D., Rodriguez, E., Sales, C. M., Retallick, W. B., y Churchill, S. W. (2005). An economic and thermodynamic evaluation of the conversion of natural gas to liquid fuels using an ion-transport membrane. En AIChE 2005 Annual Meeting Proceedings (pp. 4224-4236). AIChE. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645651177&partnerID=40&md5=cab9c081d98f1ccb8f4ab61fed77c79f
Nie, J., Jin, S., Wang, J., Yi, Y., Su, W., y Wu, B. (2025). Exergy characteristics and correlation analysis of diesel-natural gas dual-fuel premixed combustion. Applied Thermal Engineering, 278, 127468. https://doi.org/10.1016/j.applthermaleng.2025.127468
Oğur, E., Koc, A., Yagli, H., Köse, Ö., y Koc, Y. (2025). Shifting to lower carbon emission for aircraft: An alternative fuel evaluation. Energy, 316, 134426. https://doi.org/10.1016/j.energy.2025.134426
Ouyang, T., Wang, Z., Wang, G., Zhao, Z., Xie, S., y Li, X. (2021). Advanced thermoeconomic scheme and multi-objective optimization for exploiting the waste heat potentiality of marine natural gas engine. Energy, 236, 121440. https://doi.org/10.1016/j.energy.2021.121440
Rinik, R. A., Islam, N., Ehsan, M. M., y Khan, Y. (2024). Design of gravity assisted heat exchanger and its application on enhanced waste heat recuperation utilizing organic Rankine and LNG system. International Journal of Thermofluids, 24, 100822. https://doi.org/10.1016/j.ijft.2024.100822
Rubio, A., y León, B. (2024). Actividades deportivas para mejorar el aprendizaje en la materia de física. Revista Científica de Salud y Desarrollo Humano, 5(2), 398-409. https://doi.org/10.61368/r.s.d.h.v5i2.139
Su, Z., Ouyang, T., Chen, J., Xu, P., Tan, J., Chen, N., y Huang, H. (2020). Green and efficient configuration of integrated waste heat and cold energy recovery for marine natural gas/diesel dual-fuel engine. Energy Conversion and Management, 209, 112650. https://doi.org/10.1016/j.enconman.2020.112650
Tetik, T., y Karagoz, Y. (2025). Exergetic, economic, and environmental impact assessments of a natural gas-diesel fuel blended internal combustion engine. International Journal of Exergy, 47(1), 1-11. https://doi.org/10.1504/IJEX.2025.146410
Tikadar, D., Gujarathi, A. M., y Guria, C. (2021). Safety, economics, environment and energy based criteria towards multi-objective optimization of natural gas sweetening process: An industrial case study. Journal of Natural Gas Science and Engineering, 95, 104207. https://doi.org/10.1016/j.jngse.2021.104207
Torrubia, J., Valero, A., y Valero, A. (2023). Energy and carbon footprint of metals through physical allocation. Implications for energy transition. Resources, Conservation and Recycling, 199, 107281. https://doi.org/10.1016/j.resconrec.2023.107281
Yang, X., Zou, J., Lei, Q., Lu, X., y Chen, Z. (2023). Thermo-economic analysis and multi-objective optimization of a novel power generation system for LNG-fueled ships. Journal of Marine Science and Engineering, 11(12), 1219. https://doi.org/10.3390/jmse11122219
Yu, S., Chen, R., Zhao, Z., y Wei, F. (2025). Multi-aspect evaluation and optimization of a tri-generation scheme integrating a geothermal power plant with a salinity-gradient solar pond. Energy, 320, 135234. https://doi.org/10.1016/j.energy.2025.135234
Zhang, J., Alotaibi, M. A., y Wang, M. (2024). Thermo-enviro-economic analyses of a landfill biogas-fed polygeneration process combined with a liquefied natural gas cold energy utilization unit. Applied Thermal Engineering, 257, 124325. https://doi.org/10.1016/j.applthermaleng.2024.124325
Zhang, L., Xue, Y., Xie, Q., y Ren, Z. (2021). Analysis and neural network prediction of combustion stability for industrial gases. Fuel, 287, 119507. https://doi.org/10.1016/j.fuel.2020.119507
Zhou, J., Tang, N., Lua, A. C., y Duan, F. (2025). Environmental and economic viability of a dual-fuel marine engine using liquefied natural gas and diesel. Applied Thermal Engineering, 279, 127859. https://doi.org/10.1016/j.applthermaleng.2025.127859